Framework for developing volcanic fragility and vulnerability functions for critical infrastructure
نویسندگان
چکیده
Volcanic risk assessment using probabilistic models is increasingly desired for risk management, particularly for loss forecasting, critical infrastructure management, land-use planning and evacuation planning. Over the past decades this has motivated the development of comprehensive probabilistic hazard models. However, volcanic vulnerability models of equivalent sophistication have lagged behind hazard modelling because of the lack of evidence, data and, until recently, minimal demand. There is an increasingly urgent need for development of quantitative volcanic vulnerability models, including vulnerability and fragility functions, which provide robust quantitative relationships between volcanic impact (damage and disruption) and hazard intensity. The functions available to date predominantly quantify tephra fall impacts to buildings, driven by life safety concerns. We present a framework for establishing quantitative relationships between volcanic impact and hazard intensity, specifically through the derivation of vulnerability and fragility functions. We use tephra thickness and impacts to key infrastructure sectors as examples to demonstrate our framework. Our framework incorporates impact data sources, different impact intensity scales, preparation and fitting of data, uncertainty analysis and documentation. The primary data sources are post-eruption impact assessments, supplemented by laboratory experiments and expert judgment, with the latter drawing upon a wealth of semi-quantitative and qualitative studies. Different data processing and function fitting techniques can be used to derive functions; however, due to the small datasets currently available, simplified approaches are discussed. We stress that documentation of data processing, assumptions and limitations is the most important aspect of function derivation; documentation provides transparency and allows others to update functions more easily. Following our standardised approach, a volcanic risk scientist can derive a fragility or vulnerability function, which then can be easily compared to existing functions and updated as new data become available. To demonstrate how to apply our framework, we derive fragility and vulnerability functions for discrete tephra fall impacts to electricity supply, water supply, wastewater and transport networks. These functions present the probability of an infrastructure site or network component equalling or exceeding one of four impact states as a function of tephra thickness.
منابع مشابه
Improving volcanic ash fragility functions through laboratory studies: example of surface transportation networks
Surface transportation networks are critical infrastructure that are frequently affected by volcanic ash fall. Disruption to surface transportation from volcanic ash is often complex with the severity of impacts influenced by a vast array of parameters including, among others, ash properties such as particle size and deposit thickness, meteorological conditions, pavement characteristics, and mi...
متن کاملSeismic fragility assessment of RC moment resisting frame buildings designed for different editions of Iranian seismic design code
Background and objective: Developing fragility and vulnerability functions are important tools in seismic reliability assessment of buildings and are widely used in regional seismic risk studies. To date sufficient studies for developing analytical fragility functions for Iranian code-conforming buildings have not been carried out. Performing such studies are necessary to assess the adequacy of...
متن کاملProbabilistic Evaluation of Seismic Performance of RC Bridges in Iran
Many existing bridges were designed without adequate consideration of seismic risk. The full or partial collapse of even one major bridge in a city or community would have destroying results. There has been focuses on developing fragility-based seismic vulnerability of existing usual bridges in Iran or support decision making on seismic upgrade. This article focuses on developing performance b...
متن کاملAN OPTIMUM APPROACH TOWARDS SEISMIC FRAGILITY FUNCTION OF STRUCTURES THROUGH METAHEURISTIC HARMONY SEARCH ALGORITHM
Vulnerability assessment of structures encounter many uncertainties like seismic excitations intensity and response of structures. The most common approach adopted to deal with these uncertainties is vulnerability assessment through fragility functions. Fragility functions exhibit the probability of exceeding a state namely performance-level as a function of seismic intensity. A common approach...
متن کاملDamage from lava flows: insights from the 2014–2015 eruption of Fogo, Cape Verde
Fast-moving lava flows during the 2014–2015 eruption of Fogo volcano in Cape Verde engulfed 75% (n = 260) of buildings within three villages in the Chã das Caldeiras area, as well as 25% of cultivable agricultural land, water storage facilities and the only road into the area. The eruption had a catastrophic impact for the closeknit communities of Chã, destroying much of their property, land an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017